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A B S T R A C T   

Alzheimer’s disease is a progressive neurological disorder characterized by brain atrophy and cell death, leading 
to cognitive decline and impaired functioning. Previous research has primarily focused on using cross-sectional 
data for Alzheimer’s disease identification, but analyzing longitudinal sequential MR images is crucial for 
improved diagnostic accuracy and understanding disease progression. However, existing deep learning models 
face challenges in learning spatial and temporal features from such data. To address these challenges, this study 
presents a novel hybrid DenseNet-BiLSTM method for Alzheimer’s disease prediction using longitudinal MRI 
analysis. The proposed framework combines Convolutional DenseNet for spatial information extraction and 
joined BiLSTM layers for capturing temporal characteristics and relationships between longitudinal images at 
different time points. This approach overcomes issues like overfitting, vanishing gradients, and incomplete pa-
tient data. We evaluated the model on 684 longitudinal MRI images from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database, including normal controls, individuals with mild cognitive impairment, and Alz-
heimer’s disease patients. The results demonstrate high classification accuracy, with 95.28% for AD/CN, 88.19% 
for NC/MCI, 83.51% for sMCI/pMCI, and 92.14% for MCI/AD. These findings highlight the substantial 
improvement in Alzheimer’s disease diagnosis achieved through the utilization of longitudinal MRI images. The 
contributions of this study lie in both the deep learning and medical domains. In the deep learning domain, our 
hybrid framework effectively learns spatial and temporal features from longitudinal data, addressing the chal-
lenges associated with multi-dimensional and sequential time series data. In the medical domain, our study 
emphasizes the importance of analyzing baseline and longitudinal MR images for accurate diagnosis and un-
derstanding disease progression.   

1. Introduction 

1.1. Background and significance 

Alzheimer’s disease is a degenerative neurologic condition that de-
stroys brain cells and causes the brain to shrink. Alzheimer’s disease is 
the most prevalent cause of dementia, which is characterized by a steady 
deterioration in mental, behavioral, and social abilities and impairs a 
person’s capacity for independent functioning. In the US, 5.8 million 
persons who are 65 or older and have Alzheimer’s disease are affected 
(Matthews et al., 2018). 80 percent of them are 75 years of age or older. 
Between 60% and 70% of the 50 million or more persons with dementia 
globally are thought to have Alzheimer’s disease. Alzheimer’s disease 

treatment expenses in 2010 were estimated to be between $159 and 
$215 billion. According to projections, these expenses would increase to 
between $379 and more than $500 billion yearly by 2040 (Hurd et al., 
2013). Alzheimer’s disease still has no known clinical cure, and existing 
therapies simply halt disease progression (Masters and Beyreuther, 
November 2006). 

In general, there are 4 categories of biomarkers to detect Alzheimer’s 
disease: Neuroimaging, Cerebrospinal Fluid proteins, Blood and Urine 
Tests, Genetic Risk Profilers. Neuroimaging methods can be divided into 
structural and functional categories. Structural imaging methods 
include computed tomography (CT) and magnetic resonance imaging 
(MRI). CT imaging has a high resolution and can be used to distinguish 
two structures from one another. Due to its high spatial resolution, MRI 
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imaging can, however, be utilized to discern between two tissues that 
are superficially similar but not identical. You (2022) proposed fine 
perceptive GANs for brain MR image super-resolution in the wavelet 
domain, which enhanced the resolution of MRI images, enabling more 
detailed analysis of brain structures. Positron emission tomography 
(PET), single photon emission computed tomography (SPECT), and 
functional MRI are examples of functional neuroimaging techniques 
(fMRI). Although functional imaging techniques offer some structural 
details, they have a lesser spatial resolution than structural imaging 
techniques (Márquez and Yassa, 2019). Images from various imaging 
modalities show the changes that cause AD due to brain cell degenera-
tion. A number of researchers have used neuroimaging techniques to 
diagnose Alzheimer’s. MRI (Khan, 2021; Cao, 2017; Long, 2017; Lama, 
2017), fMRI (Ibrahim, 2021; Sarraf and Tofighi, 2016; Ramzan, 2020), 
PET (Chételat, 2020; Ding, 2019; Marcus et al., 2014), SPECT (Valo-
tassiou, 2018; Świetlik and Białowąs, 2019; Górriz, 2011), and DTI 
(Khvostikov, 2018; De and Chowdhury, 2021) have all been used to 
diagnose or prognosis Alzheimer’s disease. Moreover, Hu (2021) intro-
duced bidirectional mapping generative adversarial networks for brain 
MR to PET synthesis, allowing the generation of PET images from MR 
images, which can provide complementary information for Alzheimer’s 
disease diagnosis. Furthermore, data from multiple modalities was 
combined to enhance diagnosis performance (Alberdi et al., 2016; 
Zhang, 2021; Shi, 2019; Bi, 2020; Naik et al., 2020; Lin, 2023). 
Regarding the third marker, to date, the three most likely CSF bio-
markers have been identified: A42, total tau (t-tau) and phosphorylated 
tau (p-tau) (Anoop, 2010). Since blood samples can be obtained less 
invasively, cheaper and more frequently than CSF samples, biomarkers 
of AD in the blood were also examined (Snyder et al., 2014). Genetic 
Risk Profilers are the fourth biomarker in the diagnosis of Alzheimer’s 
disease. APOE-e4 is the first risk gene discovered and continues to be the 
gene that has the greatest impact on risk. According to researchers, the 
APOE-e4 gene is present in 40–65 percent of patients with Alzheimer’s 
disease (Stocker, 2018). 

Recent studies show that neuroimaging biomarkers provide much 
more accurate predictions in AD diagnosis than other biomarkers 
(Márquez and Yassa, 2019), providing hopeful methods for individual-
ized diagnosis and prognosis (Rathore, 2017; Falahati et al., Jan. 2014; 
Haller et al., Jan. 2011). For instance, Yu (2020) proposed a multi-scale 
enhanced graph convolutional network for early mild cognitive 
impairment detection, which demonstrated promising results in accu-
rately identifying cognitive impairment at an early stage. These markers 
can be very useful in the early detection as well as the conversion 
diagnosis of different stages of Alzheimer’s disease (NC/MCI/AD). Lei 
(2022) proposed a joint and deep learning approach for predicting 
clinical scores in Alzheimer’s disease, which effectively integrated 
multiple data sources and achieved accurate assessments of disease 
severity. Early and accurate diagnosis of Alzheimer’s disease is critical 
for patient care and treatment. Mild Cognitive Impairment (MCI) is a 
transitional stage between normal cognition and Alzheimer’s disease. 
Every year, about 10–25% of patients with MCI eventually progress to 
Alzheimer’s (Lu et al., 2017). There are two types of MCI: progressive 
MCI (pMCI) and stable MCI (sMCI). pMCI denotes that MCI subjects will 
eventually convert to AD, whereas sMCI subjects are stable and will not 
convert. Since Alzheimer’s disease cannot be cured or prevented at 
present, early detection of possible progression of pMCI before irre-
versible brain injury occurs is very important for preventive care. Ma-
chine learning algorithms can play an important role in helping 
specialists analyze patient data by predicting the conversion of MCI to 
AD (Kruthika et al., 2019; Uysal and Ozturk, 2020; Lu et al., 2017; Ito 
et al., 2011; Zhou et al., 2013; Liu et al., 2014; Duchesne et al., 2009; 
Beheshti, 2017; Cao, 2017; Tong et al., 2017). Furthermore, Hu (2020) 
developed a medical image reconstruction method using generative 
adversarial networks (GANs) to address the class-imbalance problem in 
Alzheimer’s disease assessment, which improved the accuracy of disease 
diagnosis. 

1.2. Previous approaches and limitations 

Several modalities can be used to study the same subject, according 
to recent research. However, collecting different modalities for the same 
subject is difficult, resulting in a smaller number of subjects for study 
(Khan, 2021). On the other hand, there is the problem of modality-wise 
missing data in the use of multimodality (Liu et al., 2018 Apr). There-
fore, to obtain better results in this paper, we have used single modality. 
Magnetic resonance imaging (MRI) is a non-invasive method of viewing 
brain atrophy changes that has been broadly used in AD research due to 
its high spatial resolution, increased accessibility, high contrast, low 
cost, and lack of radiation in the scanning process (Salvatore et al., 2018 
May 24; Syaifullah et al., 2021 Feb 5; Wong, 2021). T1-weighted mag-
netic resonance (MR) imaging with high-resolution three-dimensional 
(3D) sequences provides detailed anatomical information of the brain, 
empowering a variety of brain imaging studies, including quantitative 
measurements of brain tissue volume and cortical thickness, and image 
classification for early disease diagnosis. Deep learning structures can be 
applied to three types of neuroanatomical methods: voxel-based, ROI--
based, and patch-based. The voxel-based method assesses differences in 
local concentrations of brain tissues, primarily grey matter (GM), white 
matter (WM), and cerebrospinal fluid (CSF) (Zhang et al., 2019). This 
analytical method studies the entire brain structure rather than just the 
regional information in the brain, and therefore minor changes in the 
brain can be acquired with voxel-based morphometry. However, 
because the neuroimaging dataset is not large, this feature extraction 
method may suffer from overfitting issues, as there are fewer images 
available compared to millions of features in each image. The Region of 
Interest neuroanatomical computational method considers brain regions 
that are predefined structurally or functionally (Chitradevi and Prabha, 
2020). It extracts features from T1/T2 weighted images and diffusion 
weighted images by utilizing the spatial information in these images. 
The hippocampus is a well-known region that has been considered in 
almost all ROI-based feature extraction studies on Alzheimer’s predic-
tion because there is signs of amyloid plaque deposition in this region 
(Uysal and Ozturk, 2020), (Grimm et al., 2015). One disadvantage of 
this ROI-based morphometry is that ROI specificity requires expert 
human knowledge. Patch-based feature extraction methods divide the 
entire brain into multiple patches from which several feature vectors are 
extracted (Zhang et al., 2016). In contrast to the ROI-based framework, 
this computational technique does not require any manual identification 
of ROIs. However, it becomes difficult to select the informative patches 
from the entire image because a vast amount of patches are generated 
from each image and the computational environment may not be 
compatible with all extracted patches (Wen et al., 2020). 

Deep learning models have gained notoriety in recent years for their 
capacity to derive feature representations from the input raw data. Deep 
learning algorithms extract progressively complex feature representa-
tions from the data using a layered, hierarchical structure. Deep learning 
architectures construct complicated high-level features in a hierarchy by 
learning basic, low-level features from the input. In a number of fields, 
such as object tracking, visual object identification, natural language 
processing, human action recognition, image restoration, denoising, 
segmentation tasks, audio classification, and brain-computer interface, 
deep learning methods have shown revolutionary performance. Con-
volutional neural networks (CNNs), in particular, have recently shown 
great performance in the area of medical imaging, namely in the do-
mains of segmentation, detection, registration, and classification (Lit-
jens et al., 2017). Deep learning methods are capable of finding latent or 
hidden representations in neuroimaging data and effectively capturing 
disease-related disorders. Therefore, recently, many researchers have 
turned to using deep learning methods to diagnose Alzheimer’s disease. 
(Zhang and Shi, (2020) developed DMFNet by concatenating 2D CNN 
with the attention model and combining both low-level and high-level 
characteristics. (Janghel and Rathore, 2020) used the VGG-16 network 
to classify AD from NC using fMRI and PET NIFTI 3D data in 2D format. 
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Li et al. (2020) used a 3D-CNN to extract spatial features from the vol-
umes of 3D static neuroimages, and then transferred these feature maps 
to an LSTM method to retrieve temporal information. Convolutional 
Autoencoder and 3D CNN were used for Alzheimer detection by Oh et al. 
(2019). Separate 3D convolutional networks were built by Punjabi et al. 
(2019) for structural T1-weighted MRI and AV-45 Amyloid PET, and 
these data were then fused using a category cross entropy classifier. In 
order to predict pMCI using PET scans and a single-task model, (Choi 
and Jin, 2018) employed CNN. Using the late integration of MRI, de-
mographics, neuropsychological, and apolipoprotein E4 (APOe4) data, 
(Spasov et al., 2018) suggested a multimodal single-task classification 
method based on a CNN to identify the development of AD However, 
because a medical professional often reviews the longitudinal patient 
data before making advancement decisions, these models are less effi-
cient, less sufficient, and not medically acceptable (Ding et al., 2018). 
Based on MRI time-series data with five time intervals, (Cui et al., 2019) 
suggested a CNN-recurrent neural network (RNN) model for AD diag-
nosis. The majority of DL models for diagnosing AD use binary classi-
fications based on a single time point and a single task to detect the 
pathological alterations (Amoroso et al., 2018). 

(Ocasio and Duong, 2021) used the CNN network to predict the 
conversion of MCI to AD during 3 years. (El-Sappagh et al., 2020) used 
multimodal data and a combination of CNN and LSTM for disease 
classification. In (Zhu, 2021), a temporal structured support vector 
machine (TS-SVM) model was presented to investigate disease pro-
gression. In (Zhang et al., 2020), a linear SVM with nested LOOCV was 
proposed to classify four groups of images. On the other hand, most of 
the published works have used baseline patient data to diagnose and 
classify Alzheimer’s and have not considered the spatio-temporal nature 
of the disease data. For example, (Márquez and Yassa, 2019) used MRI 
images and three categories based on SVM to predict Alzheimer’s dis-
ease. Convolutional autoencoder (CAE)-based unsupervised learning 
and supervised transfer learning for AD versus NC classification were 
proposed in (Oh et al., 2019). Lin (2018) used CNN for disease classi-
fication and obtained a diagnosis accuracy of 81.4%. Consequently, 
models based on baseline data are less accurate than those based on 
longitudinal data from a patient, making this a suboptimal strategy for 
detecting progression. The problems that exist in previous works are: 
average detection accuracy, overfitting problem, vanishing gradients 
and incomplete patient data problem. To overcome these problems, a 
new hybrid model based on deep learning architectures is proposed, 
which can extract the spatio-temporal characteristics of the images with 
high accuracy and provide a suitable classification of the disease. 

1.3. Importance of longitudinal analysis 

Alzheimer’s is a chronic disease. The state of the disease at a certain 
point in time is dependent on the state of the previous point in time. 
Considering that in treatment systems, the progress of Alzheimer’s dis-
ease is determined over time, and usually the data obtained from the 
patient are longitudinal and are visited at different times, so the analysis 
of these data can help us lead to a more accurate and reliable diagnosis 
of the disease (Mingxia, 2018). According to our studies, until today, 
limited research has been done on longitudinal data of Alzheimer’s 
disease with deep learning methods. 

To model and measure the progression of Alzheimer’s disease over 
time to achieve higher diagnostic accuracy, baseline and longitudinal 
analysis of sequential MRI images is particularly necessary. In this 
paper, we proposed a hybrid deep method for Alzheimer’s disease 
classification using DenseNet network and BiLSTM network. Dense 
Convolutional Network (DenseNet) (Huang et al., 2017) benefits from 
feature map reuse by dense connections, minimizing dependency across 
layers by reusing feature maps from multiple layers, offering compact 
and differentiated input features by short connections of varying 
lengths, and successfully addressing the gradient vanishing problem that 
arises as the CNN layer deepens. It also outperforms CNN in training 

data from limited data. Furthermore, the Long Short-Term Memory 
(LSTM) (Hochreiter and Schmidhuber, 1997) is a framework that ad-
dresses the long-term dependency issue, vanishing gradient, and ex-
ploding gradient of Recurrent Neural Network (RNN) and is primarily 
used to forecast time-series data, making it appropriate for identifying 
temporal properties of longitudinal MRI images, which are imaging data 
of several time points. The proposed method consists of two steps. In the 
first step, in order to learn and extract spatial features from structural 
MRI images and disease classification, a DenseNet network with 
different layers is built. In the second step and following the DenseNet 
network, a stacked deep network is created based on the BiLSTM 
structure in order to capture the output time series images of the Den-
seNet network and extract the temporal features of the images with the 
aim of accurately classifying the disease. BiLSTM architecture can pro-
cess sequential images with different lengths and solve the problem of 
incomplete longitudinal data in different time points. In addition to 
solving the problems in previous works, this proposed hybrid deep 
model can automatically extract temporal and spatial features and in-
ternal correlations of baseline and longitudinal MRI images at different 
time points and provide accurate classification of Alzheimer’s disease. 

1.4. Objectives and contributions 

The contributions of this study lie in both the deep learning and 
medical domains. In the deep learning domain, we propose a hybrid 
DenseNet-BiLSTM framework that overcomes challenges related to 
overfitting, vanishing gradients, and incomplete patient data in longi-
tudinal MRI analysis. In the medical domain, our study emphasizes the 
importance of analyzing baseline and longitudinal sequential MR im-
ages for improved diagnostic accuracy and understanding of disease 
progression. By combining Convolutional DenseNet for spatial infor-
mation extraction and joined BiLSTM layers for capturing temporal 
characteristics, our framework achieves high classification accuracy and 
significantly enhances the diagnosis of Alzheimer’s disease using lon-
gitudinal MRI images. The main contributions of this study are: 1) 
proposing of a hybrid deep learning framework: we introduce a novel 
hybrid framework that addresses challenges in longitudinal MRI anal-
ysis for Alzheimer’s disease prediction. 2) Improving diagnostic accu-
racy: The proposed framework demonstrates high classification 
accuracy in Alzheimer’s disease diagnosis using longitudinal MRI im-
ages. 3) Addressing key challenges: our framework addresses crucial 
challenges in longitudinal MRI analysis, including overfitting, vanishing 
gradients, and incomplete patient data and 4) Utilization of longitudinal 
sequential MR images: we emphasize the importance of analyzing 
baseline and longitudinal sequential MR images for improved diagnostic 
accuracy and understanding disease progression in Alzheimer’s disease. 
Previous research has primarily focused on cross-sectional data, and this 
study fills the gap by incorporating longitudinal data analysis. In this 
research work, we used the imaging data of 684 subjects who were 
scanned during 4 years in order to analyze Alzheimer’s disease progress. 
These images include 193 NC, 132 pMCI, 185 sMCI and 174 AD. The 
proposed method was tested based on the important performance 
evaluation criteria. The results of various experiments showed that the 
proposed method has high efficiency and accuracy of diagnosis. 

1.5. Paper organization 

The rest of this paper is organized as follows. Section 2 describes the 
set of longitudinal MRI images used and the proposed methods and ar-
chitectures. In Section 3, the implementation results, various experi-
ments and comparison of the proposed deep method with the methods 
presented in the new papers are given. In Section 4, the discussion of the 
paper is presented. Study Limitations and Future Research Directions are 
discussed on Section 5 and finally, Section 6 deals with the summary and 
conclusion of the paper. 
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2. Materials and methods 

The image dataset and the proposed hybrid deep model of disease 
classification are presented in this section. The set of MRI images is 
collected from the ADNI Comprehensive Dataset. The use of longitudinal 
and high-dimensional images is a promising attempt to improve the 
diagnosis of Alzheimer’s disease. The proposed hybrid deep framework 
is shown in Fig. 1. In this model, we have presented a new combination 
based on DeseNet network architecture and BiLSTM network for clas-
sifying Alzheimer’s disease. First, the MRI images are preprocessed. The 
pre-processed images are then fed into the DenseNet network. In this 
network, the spatial features of the images are extracted with high ac-
curacy. After that, in order to extract temporal features, the time series 
data are entered into BiLSTM stack network. BiLSTM can model and 
measure disease progression using images taken at different time points. 
Finally, after integrating the set of features in the final layers of the 
model, the classification of the disease is done. 

In our research, we employed a hybrid DenseNet-BiLSTM architec-
ture for Alzheimer’s disease prediction using longitudinal MRI analysis. 
The selection of this architecture was based on a combination of prior 
research and empirical experimentation. The DenseNet architecture was 
chosen for its ability to effectively extract spatial information from the 
input MRI images. DenseNet is a convolutional neural network (CNN) 
architecture that introduces dense connections between layers, enabling 
feature reuse and alleviating the vanishing gradient problem. Prior 
studies have demonstrated the effectiveness of DenseNet in various 
image-related tasks, including medical image analysis. To capture the 
temporal characteristics and relationships between longitudinal images, 
we incorporated Bidirectional Long Short-Term Memory (BiLSTM) 
layers into the architecture. BiLSTM is a type of recurrent neural 
network (RNN) that allows for the modeling of sequential data by 
considering both past and future information at each time step. This 
enables the model to capture temporal dependencies and changes in the 
longitudinal MRI data. The combination of DenseNet and BiLSTM 
components in our hybrid architecture aims to leverage the strengths of 
both models in learning spatial and temporal features from the longi-
tudinal data, respectively. 

Regarding the optimization and selection of the best architecture, we 
conducted an iterative process of experimentation and evaluation. We 
trained and evaluated multiple variations of the model by adjusting 
hyperparameters, such as the number of DenseNet blocks, the number of 

layers in the BiLSTM, and the size of the hidden states. We performed 
thorough training and validation to assess the performance of each ar-
chitecture variant. Our selection of the final model architecture was 
based on a comprehensive analysis of the validation results, considering 
factors such as classification accuracy, convergence behavior, and 
generalization capability. We aimed to choose an architecture that 
achieved high prediction accuracy while avoiding overfitting and 
maintaining robust performance across different evaluation metrics. 

2.1. Study cohorts 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
was used for the study’s data (http://adni.loni.usc.edu/). As a $60 
million, five-year public-private partnership, the ADNI was established 
in 2003 by the National Institute on Aging (NIA), the National Institute 
of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug 
Administration (FDA), private pharmaceutical companies, and non- 
profit organizations. The main objective of ADNI has been to deter-
mine if serial MRI, PET, other biological markers, clinical, and neuro-
psychological evaluation may be used in conjunction to monitor the 
development of mild cognitive impairment (MCI) and early Alzheimer’s 
disease (AD). Aiming to save the time and expense of clinical trials while 
also assisting doctors and researchers in the development of new ther-
apies and the monitoring of their effects, the identification of precise and 
sensitive indicators of very early AD progression is a goal of many 
studies. The ADNI is the product of the work of several researchers from 
a variety of academic institutions and private businesses, and partici-
pants have been enrolled from more than 50 sites in the United States 
and Canada. All participating locations’ IRBs have given their approval 
for the ADNI trial. All subjects and, if relevant, their legal representa-
tives, gave their written informed consent. Visit www.adni-info.org for 
the most recent information. 

In this research, we used longitudinal MRI brain scan images to di-
agnose Alzheimer’s disease. It is known that MRI images are one of the 
most prominent and common modalities for accurate diagnosis of dis-
eases. The set of baseline and longitudinal images used in this paper are 
obtained from 3 Tesla T1-weighted MR images using volumetric 3D 
MPRAGE with 240×256×176 voxels and 1 mm×1 mm×1.2 mm voxel 
size. In order to evaluate the proposed hybrid model, based on available 
data, we used brain scans of 684 ADNI participants. These images are 
time series and were taken from patients during 48 months of visits. The 

Fig. 1. - framework of proposed hybrid deep DenseNet-BiLSTM model.  

A. Jomeiri et al.                                                                                                                                                                                                                                 

http://adni.loni.usc.edu/
http://www.adni-info.org


Behavioural Brain Research 463 (2024) 114900

5

number of time points is 7, namely: baseline, M6, M12, M18, M24, M36 
and M48. The patient images, as shown in Table 1, are divided into four 
different classes. The first class, which is 193 subjects, includes NC who 
have remained healthy for 48 months. The second class, which is 185 
subjects, includes sMCI patients (MCI patients who have not progressed 
to AD during a 4 years follow-up). The third class, which is 132 subjects, 
includes patients with pMCI (MCI patients who have converted to AD 
during a 4 years follow-up). And the fourth class, which is 174 subjects, 
includes patients who have AD throughout the visit. In this research, 
patients who had a reverse conversion during the visit (i.e. patients who 
changed from AD to MCI or from MCI to NC) and subjects who changed 
from a NC state to AD state were not considered. In three distinct planes,  
Fig. 2 displays representative MR scans of individuals with normal 
cognitive (CN), mild cognitive impairment (MCI), and Alzheimer’s dis-
ease (AD). 

2.1.1. Pre-processing 
All structural MRI information utilized in this work was obtained 

from ADNI in the Neuroimaging Informatics Technology Initiative 
(NIfTI) format, which had previously undergone processing to account 
for spatial distortion brought on by gradient nonlinearity and B1 field 
inhomogeneity. By performing the standard techniques of anterior 
commissure (AC)-posterior commissure (PC) correction, skull-stripping, 
and cerebellum removal, we further processed the MR images. In 
particular, we employed the N3 algorithm (Sled et al., 1998) to adjust 
intensity inhomogeneity, smoothed images to 256×256×256, and used 
MIPAV software for AC-PC correction. Along with cerebellar removal, a 
precise and reliable skull stripping (Wang and Summers, 2014) was 
carried out. We manually examined the skull-stripped scans to verify the 
clean and dura removal. Then, the structural MRI image was segmented 
into three tissue types: gray matter (GM), white matter (WM), and ce-
rebrospinal fluid using FAST in the FSL package (CSF). A 
mass-preserving deformable warping method named HAMMER will 
spatially normalize the three tissue volumes of each subject’s various 
time-point images onto a standard space (Shen and Davatzikos, 2003). 
Next, we created the regional volumetric maps, known as RAVENS 
maps, by warping the images while still protecting the tissue (Davatzi-
kos et al., 2001). Due of the spatially normalized GM densities’ relative 
high significance to AD compared to WM and CSF, we exclusively took 
them into consideration in our study (Liu et al., 2012). When utilizing 
longitudinal GM volume map MRI images, the specific patch-level fea-
tures that are extracted by Densent are: 

Convolutional Features: DenseNet applies convolutional opera-
tions to the GM volume map patches to extract features that capture 
local patterns, edges, and structures. These convolutional features 
represent learned representations of the patches. 

Activation Maps: DenseNet generates activation maps that indicate 
the response of each filter in the convolutional layers to the input GM 
volume map patches. These activation maps can be used as features to 
capture the presence and strength of specific image features in different 
regions of the patches. 

Concatenated Features: DenseNet utilizes dense connections, 
where the feature maps from previous layers are concatenated with the 
current layer’s input. These concatenated features capture both local 
and global information about the GM volume map patches. 

To leverage these features with a BiLSTM model, we reshape the 
extracted patch-level features into a sequence format suitable for 

sequential processing. Since we are working with longitudinal MRI 
images, it is important to consider the temporal dimension. One 
approach is to treat each longitudinal sequence of GM volume maps for a 
particular subject as a single input sequence for the BiLSTM model. In 
this case, we can extract the patch-level features from each GM volume 
map within the longitudinal sequence using DenseNet. The resulting 
features can then be organized into a sequence format, where each 
patch-level feature vector corresponds to a specific time point in the 
sequence. This sequence of patch-level feature vectors can be fed into 
the BiLSTM model to capture the temporal dependencies and patterns 
across the longitudinal GM volume maps for AD classification. 

The BiLSTM component of the model extracts temporal dynamics, 
long-term dependencies, contextual information, and feature represen-
tations from the sequential patch-level features extracted by DenseNet. 
These features allow the model to effectively incorporate the temporal 
aspect of the longitudinal GM volume map MRI images and make ac-
curate AD classification predictions. 

2.2. Feature learning by DenseNet 

This research is aimed at building a deep Densely Connected Con-
volutional Networks (DenseNet) to learn the meaningful and discrimi-
native features from the 3D image density map for AD diagnosis, in 
contrast to the traditional approach that extracts hand-crafted features. 
After preprocessing the 3D MRI images and extracting the gray matter 
volume of the brain, these data are entered into the DenseNet network 
for training. It has been extensively researched how to train features for 
image classification using the DensNet architecture, which alternately 
stacks many convolutional and pooling layers followed by fully con-
nected and softmax layers. While the input data travels through several 
layers before reaching the end of the network, CNNs develop deeper and 
deeper to increase the representational power. However, when the 
features changed from low to high levels, the information was lost. 
DenseNet, which increases direct connections between the low and high 
level layers, was offered as a solution to this issue. It connects each layer 
to every other layer in a feed-forward manner (Huang et al., 2017). 
DenseNet improves information flow across layers by densely connect-
ing layers from various levels. DenseNets provide numerous enticing 
benefits over conventional CNN (Huang et al., 2017). Because there is a 
direct relationship between the low and high level layers, they can first 
address the vanishing gradient issue. To reuse the low-level features, 
feature propagation is further strengthened. Thirdly, they can greatly 
decrease the amount of learning parameters. As a result, we build the 3D 
DenseNet on the image map in order to learn the imaging intensity and 
spatial information for disease classification. Fig. 3 illustrates the Den-
seNet architectural layout. Using the associated GM density map alone, 
we train these DenseNets classifiers. With a convolutional layer, four 
dense blocks, three transition layers, an average pooling layer, and a 
softmax layer, our built-in deep 3D DenseNet model has a network 
design and parameters that are shown in Table 2. After the input layer, a 
convolutional layer with a stride of 2× 2 ×2 is inserted first, then the 
dense blocks. The dense block employs a dense connection as opposed to 
the conventional one-way connectivity from one layer to the next, via 
which the lth layer gets the output feature maps of all previous layer as 
described by Huang et al. (2017): 

xl = Hl([x0, x1,…, xl− 1]) (1) 

Table 1 
Demographic and clinical information of the studied subjects from ADNI dataset.  

Diagnosis Number Gender (M/F) Age (Mean+SD) MMSE (Mean+SD) Education (year) CDR (Mean+SD) 

AD  174 95/79 75.6±7.8 23.3±2.0 15.1±2.8 0.8±0.8 
pMCI  132 81/51 74.9±6.9 26.7±1.7 15.8±2.5 0.4±0.1 
sMCI  185 128/57 75.1±7.8 27.3±1.8 15.0±2.8 0.4±0.1 
NC  193 107/86 76.1±5.2 29.1±1.0 15.9±2.7 0.1±0.0  
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where [x0, x1,…, xl− 1] represents the combination of the feature maps 
from all preceding layers into a single tensor, and Hlstands for a com-
posite nonlinear transformation function made up of batch normaliza-
tion, leaky rectified linear units, 3 ×3 ×3 convolution, and dropout. 
Every dense layer receives the feature maps of all preceding dense layers 
via shortcut links in the dense blocks. The dense layer consists of two 
batch normalization layers, two activation layers, one 1×1×1 and one 
3×3×3 convolutional layer. All dense blocks have three dense layers. 
Concatenating the feature maps from one dense block results in the same 
dimensions for all of them. Thus, the transition layer is set between two 
dense blocks to achieve dimension reduction of the feature maps and it 
consists of five consecutive operations: batch normalization, leaky 
rectified linear units, a 1 × 1×1 convolution, dropout and a 3 × 3×3 
convolution with a stride of 2 × 2×2. The last transition layer has the 
same structure as the previous transition layer except that the last 
convolution is of 4 × 4×3 with a 1 × 1×1 stride. Following the last dense 
block, an average pooling and a softmax classifier are appended to 
reduce the feature dimension and make the classification. The weights of 
DenseNet are updated through back-propagation for feature learning. In 
order to accomplish dimension reduction of the feature maps, the 
transition layer is placed between two dense blocks and comprises of 
five sequential operations: batch normalization, leaky rectified linear 
units, a 1×1×1 convolution, dropout, and a 3×3×3 convolution with a 
stride of 2×2×2. With the exception of the last convolution, which is a 
4× 4× 3 convolution with a 1 ×1 ×1 stride, the final transition layer 
shares the same structure as the preceding transition layer. To decrease 
the feature dimension and perform the classification, an average pooling 
and a softmax classifier are added after the last dense block. Back- 
propagation is used to update DenseNet’s weights as a result of 
feature learning. Through the shortcut connections, the loss function 
directly supervises each layer of DenseNet. A Softmax layer optimizes 
each DenseNet separately for the classification job before producing the 
class prediction score. 

2.3. The structure of long short-term memory (LSTM) network 

For the modeling, prediction, and classification of sequential/time 
series data, recurrent neural networks (RNNs) are one of the deep 

learning approaches employed. RNNs are very good at solving problems 
like speech recognition, keyword extraction, and machine translation, 
yet these networks have drawbacks like disappearing gradient and 
expanding gradient (Salehinejad, 2017). In order to address the van-
ishing and expanding gradient issues, the Long Short-Term Memory 
(LSTM) was developed as a group of RNN networks. The recurrent latent 
neurons are given an internal state in the LSTM structure so that, at each 
time point, the LSTM models use the output of the preceding state and 
the internal state as inputs to the new model. In this instance, all his-
torical data pertaining to earlier sequences connected to the present 
state is regulated, updated, and kept (Yu, 2019). LSTM architecture 
consists of three gates. An input gate, a forget gate and an output gate, 
where xt stands for the current input, Ct and Ct− 1 stand for the new and 
prior cell states, respectively, and htand ht− 1 stand in for the current and 
past outputs. Fig. 4 depicts the internal structure of the LSTM. The 
following forms illustrate the LSTM input gate’s basic operation. 

it = σ(Wi.[hi− 1, xt] + bi) (2)  

C̃t = tanh(Wi.[hi− 1, xt] + bi) (3)  

Ct = ftCt− 1 + itC̃t (4)  

where ht− 1 and xt are run through a sigmoid layer using Eq. (2) to 
determine which part of the information should be added. After ht− 1 and 
xt have traveled through the tanh layer, (3) is then used to retrieve new 
data. In (4), where Wi is a sigmoid output and C̃t is a tanh output, the 
information from the present instant, C̃t, and long-term memory, Ct− 1 
into Ct, are integrated. Here, bi stands for the input gate bias of the 
LSTM, while Wi stands for weight matrices. The use of a sigmoid layer 
and a dot product together with the LSTM’s forget gate then enables the 
selective transmission of information. The formula (5), where Wf is the 
weight matrix, bf is the offset, and σ is the sigmoid function, is used to 
decide whether to forget relevant information from a previous cell with 
a certain probability. 

ft = σ(Wf .[hi− 1, xt] + bf ) (5) 

The ht− 1 and xt inputs after (6) and (7) define the states necessary for 

Fig. 2. Sample images from the ADNI cohort (a),(b),(c) are the images of a NC subject in axial, coronal and sagittal planes, respectively. (d),(e),(f) are the images of a 
MCI subject in axial, coronal and sagittal planes, respectively. (g),(h),(i) are the images of an AD subject in axial, coronal and sagittal planes, respectively. 
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continuation by the LSTM’s output gate. The state decision vectors that 
convey new information,Ct, across the tanh layer are found and multi-
plied to get the final output. 

Ot = σ(Wo.[hi− 1, xt] + bo) (6)  

ht = Ottanh(Ct) (7)  

where bo and Wo are the LSTM bias and the weighted matrices of the 
output gate, respectively. 

2.3.1. Deep Bidirectional LSTMs (BiLSTM) 
The abovementioned LSTM models are extended by the deep- 

bidirectional LSTMs (Schuster and Paliwal, 1997), which employ two 
LSTMs to process the input data. An LSTM is used on the input sequence 
in the first round (i.e., forward layer). In the subsequent cycle, the LSTM 
model is given the input sequence’s reverse version (i.e., backward 
layer). The accuracy of the model will increase as a result of applying the 
LSTM twice because it improves learning long-term relationships be-
tween time steps of time series or sequence data (Siami-Namini et al., 
2019). 

To effectively capture the temporal variations in correlations within 
AD, we utilize the BiLSTM technique. The BiLSTM employs both a for-
ward LSTM and a backward LSTM, enabling us to capture the underlying 
dependencies and patterns present in the MRI sequence. In our 
approach, we train separate BiLSTM subnetworks for each individual 
time point in the MRI sequence. Since we are dealing with 7 time points, 
we train 7 independent one-layer BiLSTM networks concurrently. This 
allows us to focus on capturing the specific temporal features unique to 
each time point. Subsequently, we combine the learned features from 
these 7 networks and direct them towards an additional fully connected 
layer. This layer is responsible for extracting the shared features that are 
common among the different time points in the sequence. The archi-
tecture of the BiLSTM network used for extracting these temporal fea-
tures is depicted in Fig. 5. 

At each time point, the outputs of the forward and backward 

Fig. 3. The structure of DenseNet consisting of convolution layer, dense blocks, 
transition layers, average pooling and softmax layer. 

Table 2 
Parameters and architecture of our deep 3D DenseNet model.  

Layers Output Size Filter size, stride, number 

Input layer 72 × 64 × 64 - 
Convolution 64, 33 × 29 × 29 7 × 7 × 7, 2, 64, conv 
Dense block (1) 96, 33 × 29 × 29 

[
1 × 1 × 1, 1, 64, conv
3 × 3 × 3, 1, 16, conv

]

× 2 

Transition layer 48, 17 × 15 × 15 
[

1 × 1 × 1, 1, 48, conv
2 × 2 × 2, 2, 48, conv

]

Dense block (2) 80, 17 × 15 × 15 
[

1 × 1 × 1, 1, 64, conv
3 × 3 × 3, 1, 16, conv

]

× 2 

Transition layer 40, 9 × 8 × 8 
[

1 × 1 × 1, 1, 40, conv
2 × 2 × 2, 2, 40, conv

]

Dense block (3) 72, 9 × 8 × 8 
[

1 × 1 × 1, 1, 64, conv
3 × 3 × 3, 1, 16, conv

]

× 2 

Last transition layer 36, 6 × 5 × 6 
[

1 × 1 × 1, 1, 36, conv
4 × 4 × 3, 1, 36, conv

]

Dense block (4) 68, 6 × × 6 
[

1 × 1 × 1, 1, 64, conv
3 × 3 × 3, 1, 16, conv

]

× 2 

Average pooling 68, 1 × 1 × 1 - 
Softmax layer 2 -  

Fig. 4. LSTM cell structure (Hochreiter and Schmidhuber, 1997).  
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BiLSTMs are merged by concatenating them together to form the output 
of the BiLSTM for that specific time point, as depicted in Fig. 5. Unlike a 
regular LSTM unit that captures information solely from the preceding 
input sequence in a time series, it does not account for the relationship 
between future and past sequences. In contrast, a BiLSTM(Schuster and 
Paliwal, 1997) combines two independent hidden LSTM layers, one in 
the forward direction and the other in the backward direction, to cap-
ture overall dependencies within a time series. 

In the BiLSTM, an input sequence X = (X0,X1,….,Xt+1) is processed 
by the forward hidden sequence htf = (h0f , h1f ,…., h(t+1)f ) and the 
backward hidden sequence htb = (h0b,h1b,….,h(t+1)b). The output vector 
of a hidden layer, denoted as yt = (y0, y1,…., yt+1) for time steps t = 1, 
2,., t, is formed by combining htf and htb, resulting in yt = [htf ,htb], as 
shown in Eqs. (8) to (11). 

htnf = σ
(
θhnf •

[
h(tn− 1)f ,Xtn

]
+ bhnf

)
(8)  

htnb = σ
(
θhnb •

[
h(tn− 1)b,Xtn

]
+ bhnb

)
(9)  

(
ht0f , ht0b

)
…

(
htnf , htnb

)
= BiLSTM(X0,X1,…,Xt+1) (10)  

yt = σ(θyt hnf htnf + θythnb htnb + byt ) (11) 

The output of a BiLSTM yt is fed as an input to the next layer. 

2.4. The final classification 

We build unique hybrid convolutional and recurrent neural networks 
for the GM volume map using DenseNets and BiLSTM. The connected 
BiLSTMs are employed to extract the high level correlation and temporal 
properties between images in multiple time points, while the 3D Den-
seNets are formed to learn more specific image and spatial information 
of Gray Matter for classification. In order to improve the final classifi-
cation, one full connected layer is added after the hybrid neural net-
works merge the information they learnt from the GM density. Pre- 
training of individual 3D DenseNet and fine-tuning of the connected 
BiLSTM networks for the task-specific classification are both included in 
the training of the proposed hybrid convolutional and recurrent neural 
network. The DenseNets architecture is pre-trained using MR images 
from all time points in our implementation. Then, using a range of im-
ages, the pre-trained DenseNets are finetuned. The outputs of the fully 
connected layer are automatically mapped to the prediction scores of all 
class labels using the softmax classifier. The parameters of stacked 
BiLSTMs are fine-trained in conjunction with the higher fully connected 
and softmax prediction layers, whereas the initial-trained parameters of 
3D DenseNets are fixed for all convolution and pooling, and fully con-
nected layers. When the validation error rate stops dropping, the 
training iteration is complete. We determine the classification prediction 
probability for each test participant using the suggested hybrid deep 

network. 

3. Experimental results 

We initially describe the datasets and method implementation in this 
section. The comprehensive experiments we conducted to evaluate our 
methodology on the classifications of AD vs. NC, NC vs. MCI, sMCI vs. 
pMCI and MCI vs. AD are then presented. Finally, we discuss our find-
ings after comparing our approach to other approaches. 

3.1. Implementation details and hyperparameters 

The proposed classification method based on the combination of 
DenseNet architecture and BiLSTM was tested in order to analyze the 
longitudinal MRI images obtained from the ADNI dataset. The size of the 
gray matter (GM) density map after preprocessing was 256 ×256×256 
voxels. The proposed method was evaluated to classify AD vs. NC, NC vs. 
MCI, sMCI vs. pMCI and MCI vs. AD and the effectiveness results were 
obtained. The image set used for the evaluation was obtained from 
longitudinal scans of 684 ADNI participants over 4 years. These images 
include 193 NC, 132 pMCI, 185 sMCI and 174 AD. To obtain images with 
the size of 200 ×168×168 voxels, we removed pixels with zero density 
value from the images. These images are the inputs of the proposed 
classification algorithm. For each experiment, several deep learning 
models were trained with baseline and longitudinal data. An important 
advantage of time series data analysis is increasing the accuracy and 
reliability of the system when increasing the number of time steps. In 
this section, we implemented and performed tests on the deep learning 
model using DenseNet alone, BiLSTM alone, and the combination of 
DeneNet and BiLSTM architectures. In order to get better results and 
compare the performance of different architectures, training and testing 
of networks were done separately. DenseNet model was used to learn 
local features from longitudinal data, then BiLSTM model was used to 
learn temporal features. The results of the experiments showed that the 
combined model based on two architectures outperformed all other 
models, and that’s why we used this model for Alzheimer’s 
classification. 

Python 3.10.6 is used to implement the suggested technique, and the 
DenseNet and BiLSTM are built using the Keras library and the Ten-
sorflow backend. There are seven deep DenseNets that have been indi-
vidually trained to extract spatial information for specific time points 
with the goal of classifying diseases. We set the initial learning rate to 
0.001 and use a learning rate scheduler to dynamically adjust it during 
training. We used a supervised learning approach and trained the hybrid 
DenseNet-BiLSTM model using the Adam optimizer. Adam combines the 
advantages of adaptive learning rate methods and momentum-based 
optimization. When using the Adam optimizer (Kingma and Ba, 2014) 
to train model, the initial weights for the whole network are uniform, 

Fig. 5. Structure of BiLSTM network (Hochreiter and Schmidhuber, 1997).  
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and after 200 iterations, the networks are stable. Each model neuron 
uses PReLU activation, and the batch sizes are set to 64. In our study, we 
employ a cross-entropy loss function for binary classification tasks. The 
overfitting issue is also handled using the L2 regulation with parameter 
0.01 and dropout layers with probability 0.10. The training process of 
the proposed models involves optimizing the parameters to achieve the 
best performance in the classification task. To ensure unbiased evalua-
tion, we divided our dataset into two parts: a stratified training and 
validation set, which accounted for 90% of the data, and a separate test 
set comprising 10% of the data. We employed a stratification procedure 
to randomize the instances during each execution, ensuring that both 
the training and testing datasets had a similar distribution of all classes. 
This procedure was repeated ten times throughout all the reported ex-
periments to eliminate any potential bias. To determine the optimal 
hyperparameters, we utilized a technique called stratified 10-fold 
cross-validation. This involved evaluating the hyperparameters of the 
final models by dividing the data into ten equally-sized subsets while 
maintaining the class distribution. Each subset was then used as a 
validation set while the remaining data served as the training set. This 
process was repeated ten times, ensuring that every subset was used as a 
validation set exactly once. By conducting this cross-validation, we were 
able to assess the performance of different hyperparameter configura-
tions before selecting the final set. During our experiments, we input 
each modality of the data at the seven different time points into a 
masking layer, which was then followed by seven stacked BiLSTM 
layers. This architecture allowed us to effectively process and extract 
features from the input data. 

The validation phase is used to adjust the training process’ iteration 
count in order to provide model weights with the best possible perfor-
mance. Since the tasks for classifying MCI vs. NC, MCI vs. AD and pMCI 
vs. sMCI are more difficult than those for classifying AD vs. NC, we 
implemented this by transferring the network parameters learnt for 
classifying AD vs. NC to initialize training the network for classifying 
MCI vs. NC, MCI vs. AD and pMCI vs. sMCI. The effectiveness of the 
proposed classification method was evaluated by the criteria of accuracy 
(ACC), sensitivity (SEN), specificity (SPE), receiver operating charac-
teristic (ROC) curve and area under ROC curve (AUC). The proportion of 
individuals that are accurately classified among the entire population is 
used to calculate ACC. SEN is calculated as the percentage of positively 
identified samples among all positively identified samples. The SPE is 
calculated as the percentage of accurately categorized negative samples 
among all negative samples. Plotting the true positive rate (TPR) versus 
the false positive rate (FPR) at different thresholds based on the class 
prediction scores produces the ROC curve. 

3.2. Disease classification results 

To evaluate the efficiency of the proposed Alzheimer’s disease clas-
sification method, we conducted several experiments. In order to 
compare our proposed framework with other models, we also performed 
tests on popular deep learning models such as VGG19 (Han et al., 2015) 
and ResNet50 (He et al., 2016). In the first experiment, we trained the 
VGG19 model solely with the problem data. The VGG19 model utilized a 
transfer learning strategy for controlled 3D MRI tests, initializing its 
model weights using image data from ImageNet (Deng et al., 2009). 
Similarly, in the second experiment, we trained the ResNet50 model 
using the same approach. Moving on, we conducted an experiment 
where we exclusively trained the DenseNet network using the gray 
matter density map, without considering the second part of the model, 
BiLSTM. Patient data from all time points were given as input to the 
network. DenseNet successfully extracted high-level features from the 
brain images and performed disease classification. In another experi-
ment, we fed patients’ longitudinal data into a BiLSTM network and 
trained the network. By extracting temporal features and hidden cor-
relations, BiLSTM effectively classified the images. 

Finally, we tested the proposed classification algorithm based on the 

combination of DenseNet architecture and stacked BiLSTM to extract 
both spatial and temporal features of the images for disease classifica-
tion. The results were evaluated using Receiver Operating Characteristic 
(ROC) curves. Fig. 6 depict the ROC curves of the methods used to 
classify AD vs. NC, NC vs. MCI, sMCI vs. pMCI, and MCI vs. AD, 
respectively. The comparison of these curves reveals two important 
findings. Firstly, the proposed method demonstrated higher detection 
accuracy compared to other methods. Secondly, the correct classifica-
tion of samples was notably better in the AD versus NC comparison than 
in other disease states. Overall, these experimental results highlight the 
superiority of our hybrid DenseNet-BiLSTM method in Alzheimer’s 
disease classification, showcasing its ability to leverage both spatial and 
temporal information for improved accuracy and performance. 

3.2.1. Classification Accuracy 
The performance comparison of VGG19, ResNet50, DenseNet, 

BiLSTM architectures and the proposed hybrid deep method to classify 
AD vs. NC, NC vs. MCI, sMCI vs. pMCI and MCI vs. AD is given in Table 3. 
The best straightforward measure for comparing different approaches is 
accuracy, which counts the number of properly identified samples in a 
test set. In terms of sensitivity and specificity, the likelihood of misdi-
agnosis for each clinical label decreases with increasing values of these 
metrics. The results show that the proposed method based on the com-
bination of DenseNet and BiLSTM can improve the classification effi-
ciency compared to the single use of DenseNet and BiLSTM. With the 
proposed framework, we obtained higher classification accuracy than 
other methods. The classification accuracy results for different tasks are 
as follows:  

- AD/CN Classification: 
The proposed framework achieved a classification accuracy of 

95.28% in distinguishing between Alzheimer’s disease patients and 
normal controls. This high accuracy demonstrates the effectiveness 
of our method in accurately identifying individuals with Alzheimer’s 
disease.  

- NC/MCI Classification: 
For the task of differentiating normal controls from individuals 

with mild cognitive impairment, the proposed framework achieved 
an accuracy of 88.19%. This indicates the capability of our method to 
identify early cognitive decline in individuals with MCI.  

- sMCI/pMCI Classification: 
In classifying individuals with stable mild cognitive impairment 

(sMCI) and progressive mild cognitive impairment (pMCI), the pro-
posed framework achieved an accuracy of 83.51%. This highlights 
the potential of our method to differentiate different stages of 
cognitive impairment.  

- MCI/AD Classification: 

The classification accuracy for distinguishing individuals with mild 
cognitive impairment from those with Alzheimer’s disease was 92.14%. 
This result demonstrates the effectiveness of our method in identifying 
individuals at risk of progressing to Alzheimer’s disease. 

The suggested framework, which directly used longitudinal 3D MRI 
data, provided a considerably superior result for AD classification than 
the other methods, as shown by the experiment results in Table 3 and 
Fig. 6. It proved our hypothesis that the conserved spatial and time series 
data in 3D MRI data is important for AD detection. Additionally, it has 
been demonstrated that the DenseNet-BiLSTM model put out in this 
study is a successful solution for classifying MRI images and fully 
extracting the spatio-temporal properties of MRI data for AD diagnosis. 

The next experiment aimed to analyze the effect of longitudinal data 
at different time steps on the classification of AD vs. NC, NC vs. MCI, 
sMCI vs. pMCI, and MCI vs. AD using the proposed architectures. In this 
experiment, we tested the proposed method for longitudinal analysis of 
images by gradually adding MRI images from subsequent visits. The 
results of this experiment are presented in Fig. 7. The horizontal axis 
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represents the time steps, with m6, m12, m18, m24, m30, m36, and m48 
denoting 6-month, 12-month, 18-month, 24-month, 30-month, 36- 
month, and 48-month intervals, respectively. 

Fig. 7 illustrates that as the number of time steps increases and more 
longitudinal images are added to the model, the classification accuracy 
improves. It is evident that the proposed method successfully extracts 
spatio-temporal features from the longitudinal time series images, 
resulting in superior performance across all cases. Furthermore, the 
proposed method exhibits higher detection accuracy compared to other 
methods when considering the sequence of different inputs. These 
findings demonstrate the importance of incorporating longitudinal data 
and the effectiveness of the proposed method in capturing the spatio- 
temporal patterns present in longitudinal MRI images. By considering 
the progression of the disease over time, the proposed method achieves 
enhanced classification accuracy, providing valuable insights for early 
detection and monitoring of Alzheimer’s disease. 

3.3. Comparison with related studies 

In this section, we compare the performance and effectiveness of our 
proposed method for classifying Alzheimer’s disease with the methods 
used in recent studies. Table 4 provides a comparison of various studies 

based on eight main parameters. It is evident that several previous 
studies (El-Sappagh et al., 2021; Huang et al., 2019; Zandifar et al., 
2020; Platero and Tobar, 2020; Dimitriadis et al., 2017; Beheshti et al., 
2017; Ritter et al., 2015; Uysal and Ozturk, 2020; Bucholc et al., 2019) 
have utilized traditional classification methods such as K-Nearest 
Neighbors (KNN) and Support Vector Machines (SVM) to analyze the 
progression of Alzheimer’s disease. However, these methods generally 
do not achieve satisfactory diagnostic accuracy. Many studies have 
predominantly employed Magnetic Resonance Imaging (MRI) as the 
primary modality for Alzheimer’s disease diagnosis (Cui et al., 2019; 
Dimitriadis et al., 2017; Beheshti et al., 2017; Uysal and Ozturk, 2020; 
Pan et al., 2020; Basaia et al., 2019; Abrol et al., 2020; Liu et al., 2020; 
Oh et al., 2019; Hong et al., 2019; Liu et al., 2019). Among the deep 
learning architectures used for MRI analysis, Convolutional Neural 
Networks (CNN) have been widely employed (Basaia et al., 2019; Oh 
et al., 2019; Liu et al., 2019; Spasov et al., 2019). 

In contrast, the analysis of longitudinal data in the form of time series 
for Alzheimer’s disease diagnosis has received less attention in the 
literature. This is primarily due to the challenges associated with 
obtaining complete patient data at regular time intervals and the diffi-
culty in collecting such data. Only a limited number of studies have 
utilized longitudinal patient data (Cui et al., 2019; Platero and Tobar, 

Fig. 6. - Comparison of ROC curves of the methods used to classify (a) AD vs. NC, (b) NC vs. MCI, (c) sMCI vs. pMCI and (d) MCI vs. AD, respectively.  
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2020; Hong et al., 2019; Lu et al., 2017; El-Sappagh et al., 2020). 
However, these studies have not achieved significant diagnostic accu-
racy. For instance, in one study (Lu et al., 2017), a Gated Recurrent Unit 
(GRU)-based model was presented for multi-data fusion using four time 
points, achieving an accuracy of 81%. Another study (Cui et al., 2019) 
utilized a combined model of CNN and Bidirectional Gated Recurrent 
Unit (BGRU) with 3D MRI images, achieving accuracies of 91.33% for 
Alzheimer’s disease versus normal controls (AD vs. NC) and 71.71% for 
progressive MCI versus stable MCI (pMCI vs. sMCI). In a different study 
(El-Sappagh et al., 2020), 15 time points were used for investigating the 
disease, resulting in an accuracy of 92.62%. Similarly, (Platero and 
Tobar, 2020) utilized six time points, and (Hong et al., 2019) utilized ten 
time points for classification. Among these studies, Recurrent Neural 
Networks (RNN) have been the most commonly employed neural 
network architecture for longitudinal data analysis (Cui et al., 2019; 
Platero and Tobar, 2020; Hong et al., 2019; Lu et al., 2017). It is worth 
noting that all these studies have utilized the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) dataset. 

Our proposed model has demonstrated excellent performance in 
terms of its ability to extract specific features from longitudinal data and 
accurately classify the disease. Our model outperforms state-of-the-art 
studies and has the potential to be applied in treatment decision sys-
tems. However, further improvements and adaptations are necessary to 
make this model viable in real treatment environments. Additionally, as 
future work, incorporating other patient information can enhance the 
categorization of the disease and improve the overall diagnostic 
accuracy. 

4. Discussion 

Various methods for classifying Alzheimer’s disease using longitu-
dinal MRI data analysis as time series have been proposed in the papers. 
CNN, RNN, SVM, LDA and LSTM models are mainly used in these 
methods. In a small number of these works, the combination of these 
models has been used. Considering the nature of longitudinal brain data, 
our proposed framework, by combining DenseNet and BiLSTM archi-
tectures, was able to extract spatial and temporal features of 3D images 
well and provide a competitive classification of diseases. DenseNet deep 
architecture was used to extract the spatial features of 3D MRI images, 
and BiLSTM network architecture was used in DenseNet output to 
sequentially extract high-level temporal features of MRI images. At the 
end, all the features extracted by a Flatten layer were combined and 
after passing through a fully connected layer, they entered the Softmax 
layer for classification. In previous works, the problems of overfitting, 
vanishing gradients and the problem of incomplete patient data were 
not paid attention to. In this research, we tried to solve these problems 
by presenting a new hybrid deep model. A new hybrid model based on 
deep learning architectures is proposed, which can extract the spatio- 
temporal characteristics of the images with high accuracy and provide 
a suitable classification of the disease. Our proposed framework uses 
whole-brain MRI scans without extracting regional brain volumes and 
cortical thickness. As a result, the proposed method reduces the calcu-
lation time and speeds up the processing. Regarding the calculation cost, 
the proposed method includes two stages of training and testing. The 
time spent to train the proposed deep network model was 4.1 hours. In 
the second stage, about half a second was spent to test the specific 
image. All tests were performed on a PC with Ubuntu OS and NVIDIA 
GTX1080 GPU and 12 GB memory. 

5. Study Limitations and Future Research Directions 

While our study demonstrates promising results in Alzheimer’s dis-
ease prediction using longitudinal MRI analysis, there are several limi-
tations that should be acknowledged. These limitations provide 
opportunities for future research and improvement in the field. 

Firstly, our study focused on utilizing a single modality, namely Ta
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magnetic resonance imaging (MRI), for Alzheimer’s disease prediction. 
While MRI provides high spatial resolution and detailed anatomical 
information, incorporating multiple modalities, such as positron emis-
sion tomography (PET) or cerebrospinal fluid (CSF) biomarkers, may 
further enhance the accuracy and reliability of the predictive models. 
Future research could explore the integration of multimodal data to 
improve the overall performance of Alzheimer’s disease prediction 
models. 

Secondly, the issue of missing data poses a challenge in the analysis 
of multimodality data. Collecting different modalities for the same 
subjects can be challenging, leading to a smaller number of subjects 
available for study. Additionally, there may be modality-wise missing 
data, which can impact the analysis and interpretation of the results. 
Future studies should aim to address these challenges by developing 
robust methodologies to handle missing data and investigate strategies 
to effectively combine information from diverse modalities. 

Furthermore, our study focused on a specific population from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, which 
may limit the generalizability of the findings to other populations or 
cohorts. Future research should aim to validate the proposed hybrid 
DenseNet-BiLSTM method on diverse and independent datasets, 
including different ethnicities, age groups, and disease stages, to assess 
its performance and generalizability across various populations. 

In conclusion, while our study contributes to the field of Alzheimer’s 
disease prediction using longitudinal MRI analysis, it is important to 
acknowledge the study limitations. The integration of multiple modal-
ities, addressing missing data challenges and validating the proposed 
method on diverse datasets are all areas that warrant further investi-
gation. Future research in these directions will provide valuable insights 
and advancements in the accurate diagnosis and understanding of Alz-
heimer’s disease progression. 

6. Conclusion 

In this study, we presented a new method for Alzheimer’s disease 

diagnosis based on the combination of DenseNet and BiLSTM architec-
ture. Through feature reuse, DenseNet drastically decreases network 
parameters and avoids using numerous duplicate features. With lessened 
gradient vanishing, the convergence speed is also enhanced. The Den-
seNet network was used to extract the spatial features of the images at 
different time points, and the connected BiLSTM network was used to 
extract the longitudinal features of the images and to model high-level 
temporal variables for disease classification. The accuracy of the 
model will increase as a result of using the BiLSTM, which enhances 
learning long-term relationships between time steps of time series or 
sequences of MRI images. The results of various tests on the ADNI 
dataset have shown that firstly the proposed model is fully compatible 
with the characteristics of longitudinal MRI images and can be used for 
analyzing time series data and as a result classifying Alzheimer’s disease 
and secondly the accuracy of diagnosing the disease with this deep 
method It has improved significantly compared to other methods used in 
the papers. The use of other imaging modalities such as fMRI, PET, EEG 
and their combination to diagnose the disease can be considered as 
future works. Also, in the future, we can work on topics such as image 
preprocessing, feature extraction, and applying this framework to di-
agnose other diseases. 
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3 class 4 class 

(El-Sappagh et al., 
2021)  

1029 ADNI C, CSs, MH LR, KNN, SVM, DT, 
RF 

Baseline 100% 95.6% - - 87.69% - 

(Pan et al., 2020)  509 ADNI MRI Ensemble CNN Baseline 84% - 62% - - - 
(Huang et al., 2019)  290 ADNI CSF, CSs, MRI SVM Baseline - - 86.4% - - - 
(Kruthika et al., 

2019)  
475 ADNI MRI Naïve Bayes, SVM, 

KNN 
Baseline - - - 81.3% - - 

(Zandifar et al., 
2020)  

756 ADNI MRI, CSs Naïve Bayes Baseline - - 87% - - - 

(Basaia et al., 2019)  229 ADNI MRI CNN Baseline 99% - 75% - - - 
(Lu et al., 2018)  1051 ADNI FDG-PET DNN Baseline 93.58% - 81.55% - - - 
(Abrol et al., 2020)  828 ADNI MRI ReseNet Baseline 91% - 77.8% - - 83.01% 
(Platero and Tobar, 

2020)  
321 ADNI MRI & N LDA Longitudinal - - - 85% - - 

(Dimitriadis et al., 
2017)  

400 ADNI MRI RF Baseline - - - - - 61.9% 

(Liu et al., 2020)  449 ADNI MRI CNN, DenseNet Baseline 88.9% 76.2% - - - - 
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2017)  
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(Oh et al., 2019)  694 ADNI MRI CNN Baseline 86.6% - - - - - 
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Stacked CNN- 
BiLSTM 

Longitudinal - - - - - 92.62% 

(Cui et al., 2019)  830 ADNI MRI Stacked CNN-BGRU Longitudinal 91.33% - 71.71% - - - 
(Ritter et al., 2015)  237 ADNI 10 Modalities SVM Baseline 73% - - - - - 
(Uysal and Ozturk, 

2020)  
485 ADNI MRI LR, KNN, SVM,DT, 

RF 
Baseline 94% 95% - 87% 82% - 

(Bucholc et al., 
2019)  

488 ADNI CSs, PET, MRI, 
CSF 

SVM, Ridge Baseline - - - - 83% - 

(Hong et al., 2019)  1105 ADNI MRI LSTM Longitudinal 93.5% 73.9% - 79.8% 77.7% - 
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(Lu et al., 2017)  1618 ADNI D, MRI, CSs, 

CSF 
GRU Longitudinal - 90.53% - - - - 

Our method  684 ADNI MRI Hybrid DenseNet & 
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C: comorbidities, MH: Medication History, NP: Neuropathology, N: Neuropsychological, D: Demographics, 3-classes: CN/MCI/AD, 4-classes: CN/sMCI/pMCI/AD. 
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